If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+16y=0
a = 5; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·5·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*5}=\frac{-32}{10} =-3+1/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*5}=\frac{0}{10} =0 $
| 6x-4(4x-6)=-46 | | 2.6•y=1.873 | | 10x–5=35 | | X+2x+x÷2=63 | | (2x+4)(9x+11)=0 | | 20^x=54 | | -2/5x+6/3=2 | | 3-4x/5=8-2x/4 | | (x+9)/10=7/5+(x-4)/7 | | 9x-10=8x-2 | | 5x-1=-4x+4x=6 | | -n+1/n+4+10/3=0 | | 9^x+2=81 | | 5x-1=1x+4x-6 | | 49x^2-98x+49=0 | | 7x+4(-2+9)=25 | | 7(3x+4)=154 | | 3x-5(x-2)=-7+4x-7 | | 42x^2+6x-115=0 | | 5x+7(-3x-2)=-94 | | 1/2x^2+3=x-9;x^2+6=2x-18 | | 6x+2(-4x+8)=-8 | | -6+4(3x+4)=76 | | 2x÷7=4+x | | 9(j+1)=45 | | -(p+6)=-2 | | 2(u+3)+6=8 | | -5x+12+6x=2x-4 | | -4c+2=-10 | | -2(h-9)=-14 | | -23+4r=-3(7r-8) | | 9=3(w-5)+3 |